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Drag on eccentrically positioned spheres translating 
and rotating in tubes 

By HuSNu TOZEREN 
Department of Engineering Sciences, Middle East Technical University, Ankara, Turkey 

(Received 23 November 1981, and in revised form 19 June 1982) 

The steady motion of an eccentrically positioned sphere in a circular cylindrical tube 
filled with viscous fluid is considered as a regular perturbation of the axisymmetric 
problem. A sequence of boundary-value problems is formulated involving Stokes 
equations and some linear boundary conditions. Solutions of the first- and second-order 
problems yield the leading terms in the perturbation series of the additional drag and 
the torque on the spheres. The results are found to be in good agreement with the 
previous off-axis solutions. 

1. Introduction 
A number of previous studies have considered the steady slow off-axis motion of 

a sphere in a fluid-filled tube. Happel and Brenner (1965) presented asymptotic 
solutions valid in the limit where the particle radius is small compared with the tube 
radius. They found that the drag on an eccentrically positioned sphere translating 
slowly in the axial direction is a function of the eccentricity parameter E ,  which is 
defined as the ratio of the distance between the sphere centre and the tube axis to 
the tube radius. For constant values of particle radius and velocity the drag on the 
particle decreases as E increases, attains a minimum for E w 0-4 and then increases 
for greater values of E .  The solution by Happel & Brenner is based on the method 
of reflections, which requires that the particle be small and far removed from the tube 
walls. Solutions for the opposite limit of closely fitting particles are given by Bungay 
& Brenner (1973) in the form of singular perturbation series. Their results are in 
qualitative agreement with the results of Happel & Brenner. 

Recently Tozeren (1982) considered the off-axis motion of a sphere translating in 
a tube as a regular perturbation of the axisymmetrical problem. His solutions based 
on the boundary collocation procedure described in Leichtberg, Pfeffer & Weinbaum 
(1976) are valid for a wide range of particle-to-tube-diameter ratios under the 
condition that 6 is small. The zeroth-order perturbation solution yields the drag on 
a concentrically positioned sphere. This result was previously obtained by Haberman 
& Sayre (1958) and Leichtberg et al. (1976). The first-order solution gives the leading 
term in the perturbation expansion of the torque on the particle but yields no 
information about the drag. I n  the present paper the first correction to the zeroth-order 
drag is obtained by determining the second-order perturbation solutions. The present 
results are in good agreement with the results of Happel & Brenner (1965) when the 
radius of the sphere and E are small. The results show that the drag on a finite sphere 
slightly off-axis is smaller than the drag on identical spheres flowing with the same 
velocity along the centreline. 

The determination of the first few perturbation solutions, as e tends to zero, is much 
simpler than tackling the more general problem involving arbitrary eccentricity. The 
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FIGURE 1. The flow of an eccentrically positioned sphere in a tube. 

solution of Stokes equations in general involves surface spherical harmonics of any 
order (see Happel & Brenner 1965). However, the perturbation scheme given in this 
paper considerably simplifies the series solutions : the zeroth-order velocities are 
axisymmetric, first-order velocities are proportional to cos$ (where $ is the polar 
angle), and second-order velocities that  lead to non-zero drag are also axisymmetrical. 
This reduces substantially the amount of computational work, 

The perturbation scheme and analytical solutions are presented in $ 2 , 3  and 4. The 
results are discussed and compared with previous work in $5. 

2. Formulation 
Consider the slow translation and rotation of an eccentrically positioned sphere in 

a fluid-filled circular cylindrical tube (figure 1). The particle translates parallel to the 
axis with velocity U ,  rotates about the +y-axis with angular velocity €0, and the 
viscous fluid flows with an average velocity i V .  The sphere radius a is assumed to be 
comparable to the tube radius b .  The distance between the sphere centre and the tube 
axis is taken as cb, where E is small compared with unity. 

The inertial terms are neglected in the Navier-Stokes equations, and the motion 
of the suspending fluid is considered to be a steady Stokes flow relative to  the particles. 
The equations of Stokes flow are 

where v is the velocity vector and p is the pressure. The equation of continuity is 

pv2v = v p ,  (2.1) 

v.v  = 0.  (2.2) 

v = x v ( n ) e n ,  p = x p ( n ) , n ,  (2.3) 

/ p v ( n )  = V p W ,  v .  v ( n )  = 0. (2.4) 

The velocities and pressure are treated as a regular perturbation of the axisymmetric 

problem m m 

n=o n-0 

where each field vtn) andptn) satisfies the Stokes equations and equation of continuity 

Taking the sphere centre as the origin, spherical and cylindrical coordinate systems 
are introduced as shown in figure 1.  The equation of the cylinder surface written with 
respect to the latter coordinate system depends on the perturbation quantity c:  

R = b ( 1 - E  cos$-+e2 (1-cos2$)-&e4(~-2 cos2$++cos4q5)+0(e5)) (2.5) 
asc+O.  
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The boundary conditions are (figure 1) 

1 v =  Uk+asCljxe, ( r = a ) ,  

v = O  ( R ‘ =  b ) ,  

where ( R ,  z’, $’) are cylindrical coordinates whose symmetry axis coincides with the 
axis of the tube. The unit vectors j, k, e, are referred to the ( R ,  z ,  $) coordinate system. 

Substituting (2 .3 )  and the relation between R’ and R, R’2 = R2 + 2Rbs cos $ + bas2, 
into ( 2 . 6 ) ,  the boundary conditions on the sphere and a t  infinity are obtained for 
various perturbation fields : 

(i) On the sphere ( r  = a )  

and higher-order fields are identically zero ; 

y(2) = - J 

and higher-order velocities tend to zero at infinity. 

v(0) + ev(1) + . . . Gz 0 
The no-slip condition 

a t  the surface of the cylinder, R‘ = b, can be reduced into a sequence of boundary 
conditions by expanding each velocity field in Taylor series about R = b :  

(2.10) 

Substituting (2 .5 )  into (2 .10)  and the resulting equation in (2 .9 )  and collecting the 
terms of same order in s, a sequence of boundary conditions a t  R = b is obtained. 
These conditions are given below in terms of the radial distance R made dimensionless 
with respect to the tube radius b : 

( R  = 1 ) .  (2 .11)  

A summary of the zeroth- and first-order perturbation solutions obtained by 
Tozeren (1982a)  is given in $3 .  In  $4, the second-order perturbation solution v ( ~ )  is 
developed using these results. 
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3. Zeroth- and first-order perturbation solutions 
The zeroth-order velocities in the present perturbation solution is the solution for 

the axisymmetrical motion of a sphere along the axis of a circular cylinder. This is 
given by Leichtberg et al. (1976) as a superposition of solutions of Stokes equations 
in spherical coordinates O(O) and a cylindrical coordinates V ( O ) .  To carry out the 
superposition of these solutions (v(O) = V0) + V ( O ) )  all vector components are referred 
to the cylindrical coordinates even when the spherical coordinates are being used as 
the independent variables. The R- and z-components of O ( O )  are (see Leichtberg et al. 
1976) W 

(3 .1)  1 fip) = E (C,P,(y) rPn-l + D,(P, + ZF,)r-"+l), 
n - 2  

W (n+ 1) Fn(Pu) r-n-l  (n+ 1 )  Fn+l-ZPFn -,+I 

sin 8 1 9  
fig' = x ( c n  sin 8 + D n  

n-2 

where Pn(p) and F,(p) are Legendre and Gegenbauer polynomials of order n and 
p = cos 8. The coefficients C, and D, are determined by the boundary conditions on 
the surface of the sphere. Owing to the symmetry about the z = 0 surface and the 
properties of Legendre and Gegenbauer polynomials, C, and D, are equal to zero 
when n takes odd values. 

The solution applicable to axisymmetric creeping-flow problems in infinite cylinders 
is given by Leichtberg et al. (1976). Using matrix notation, this can be written as: 

where all the variables having dimensions of length are non-dimensionalized by the 
tube radius b ,  and the matrices S(q5, z t )  and I(R, t )  are 

0 
sin q5 sin zt 

0 cos q5 coszt 
S(q5, z t )  = 

1 .  RtZo (Rt ) 
0 

tIo(Rt) 0 Rtl ,  (Rt )  + 210(Rt) J 
The functions Z o ( t )  and Il(t) used in these equations are zeroth-and first-order modified 
Bessel functions. The functions A(t )  and B(t)  given by equations (3.13) and (3.14) of 
Leichtberg et al. (1976) are chosen such that the no-slip condition do) = + V(O) = 0 
on the cylindrical tube is automatically satisfied for arbitrary values of C, and D ,  : 

(3 .3)  

The functions F'(t) and &(t )  are Fourier transforms of the series in (3.1) giving 
i jR  and i jz a t  R = 1 (sine transform for i j R  and cosine for C Z ) :  

( )  = 5 r S ( 0 , z t )  [) dt ( R  = 1). (3 .4)  
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The solution obtained by the superposition of (3.1) and (3.2) subject to (3.3) satisfies 
the no-slip condition at R = 1. The coefficients C, and D,  are then determined by 
applying the boundary conditions at the surface of the spheres to this solution (see 
Leichtberg et al. 1976). 

The first-order velocities subject to the boundary conditions (using dimensionless 
variables a ,  T ,  R and z )  

v(l) = abnj x e, ( r  = a) ,  (3.5) 

v(') = -2RV cos $k (Z = T a), (3.6) 

(3.7) 

are determined in Tozeren ( 1 9 8 2 ~ )  by the superposition of the following solutions: 
( A )  the solution of Stokes equations in cylindrical coordinates satisfying the 

boundary condition a t  the cylindrical surface (3.7) only; and 
(B)  superposition of solutions in spherical and cylindrical coordinates satisfying 

conditions a t  the particle surface and giving zero velocities a t  the tube surface. 
The boundary conditions (3.5)-(3.7) indicate that the velocities are given by the 

terms proportional to cos $ (or sin $) in the general solutions of Stokes equations in 
spherical coordinates (see equation (3-2.3) of Happel & Brenner 1965) 

W f  

+&n[r-n-2p2n+l -n(n+ 1 )  r-n-zPn+l] 

+n(2n- 1 )  
cn[ -a(% - 2)  r-"(P,+, - n(n + 1 )  Pn+l) + (n  + I )  r-.Ph sin e] , 1 1 

(3.8 a )  
sin 0 Pi+, - 1 r-n-l 

n-1 2(2n+ 3 )  1 

1 b,  r-n-2Pi + n-2  c ,  r-np;}, 
2n(2n- 1 )  sine 

-- 
sin 0 

and in cylindrical coordinates 

(:;:) = 1; S($, z t )  13(R, t )  (i) dt, 

$1) 

where I,(R,t) is (see Happel & Brenner 1965, equation 7-3.51) 

(3.8b) 

( 3 . 8 ~ )  

(3.9) 

I i (Rt )  Rt I;( Rt ) 
Rt 

Il(W I l W )  I;(Rt) -&(Rt) -- -- 
Rt Rt 

0 I,(Rt) I,(Rt) + RtI;(Rt) 
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The solution ( A )  mentioned above is obtained by choosing ~ ( t ) ,  q5(t), m(t )  as 

(3.10) 

where 
1 m 

F(t)  = c ( -  l)bn 7 (Cn[tn+lKo(t) + PK,(t)] n. n--2 

- D,[ (nz - 3n + 3 )  tn-'K0(t) - (2n- 3 )  tnK1(t) + (n  - 2)  (n - 3 )  tn-'K1(t)]} 
+;n[t-2II(t)C(t) + (t21,(t) +2tI,(t))D(t)],  (3.11) 

as given by equation (2.13) of Tozeren ( 1 9 8 2 ~ ) .  The velocities obtained by 
substituting (3.10) into (3.9) satisfy the boundary condition (3.7). The KO and K,  are 
zeroth- and first-order Macdonald functions. 

The solution (B)  giving zero velocities at R = 1 independent of the values of a,, 
6 ,  and c, in (3.8) is developed by Tozeren (1982) choosing x, $, 7~ as 

(3.12) 

where GR(R, t ) ,  G$(R, t ) ,  Gz(R, t )  are Fourier transforms of GR, 6$, Gz, in (3.8) with 
respect to z for fixed R (sine transform for GR and G$, cosine for Gz): 

(n-2)-2 (n- 1) 
-$bn(tn"Kz(Rt) +tn+'Ko(Rt)) +- tn-'K,(Rt) 

2n- 1 

+ i (2n  - 1 )  RtnKl(Rt) -+(n + l ) (n-  2 )  tn-'Ko(Rt)]} cos $, ( 3 . 1 3 ~ )  

+ (2n- 1)Rtn-'K0(Rt)]} sin 4, (3.13 b)  

+b,tn+lK1(Rt)+&c, tn-lK1(Rt) - RtnKo(Rt)]} cos q5. 
( 3 . 1 3 ~ )  Using (3.12), at R = 1 ,  0 is 

(3.14) 
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Therefore the superposition of B and 0 leads to zero velocities a t  R = 1 independent 
of the values of a,, b,, c,. These coefficients were then determined in Tozeren (1982) 
by applying the boundary conditions on the surface of the sphere to the superposition 
of solutions ( A )  and ( B ) .  

4. Second-order perturbation solution 
The velocities do) are axisymmetric ; the R- and z-components ofv(') are proportional 

to cos $, the $-component is proportional to sin $. The components of d2) as indicated 
by the boundary conditions (2.7)-(2.11), consist of terms proportional to cos 2$ 
(or sin 24) and axisymmetric terms. Among these surface spherical harmonics of 
different type in the general solution of Stokes equations in spherical coordinates 
(Happel & Brenner 1965, equation 3-2.3) the one that contributes to the drag on the 
spheres is P - ~ .  This term is a combination of ~ - ~ f ' ~ ( , u )  and rp2Pi(p) cos$. Yielding 
velocities proportional to cos$ (or sin$), the second term violates the boundary 
conditions for v ( ~ ) ,  and is therefore excluded from the series solution. Also, according 
to this result, the spherical harmonic proportional to cos 294, rpfl-lPn(,u) cos2$, gives 
no drag on the sphere. To evaluate the second-order corrections to drag on the sphere, 
it suffices then to determine the axisymmetrical part of d2) : This solution satisfies 
the following boundary conditions (see (2.7), (2.8) and in particular (2.11)): 

d2) = 0 ( r  = a), ( 4 . 1 ~ )  

v(2) = - n (z= * oo), (4.1 b) 

(4.1 c) 

where v(l) is that part of v(l) independent of angle $ (i.e. the expression multiplied 
by cos $ or sin $ in v(l)). 

As the zeroth-order solution (see Leichtberg et al. 1976), the axisymmetrical part 
of v ( ~ )  can be found as a superposition of solutions in spherical and cylindrical 
coordinates, (3.1) and (3.2). Axisymmetric solutions of Stokes equations u which 
satisfy the boundary conditions a t  R = 1 and a t  infinity, (4.1 c, b) are developed by 
choosing the functions C(t) and D(t) as follows. The left-hand side of (4.1 c) is written 
as a Fourier cosine (or sine) inversion integral in the variable z. Using (3.1)-(3.13), 
this is found as the superposition of the following expressions. 

( i )  The second term in ( 4 . 1 ~ )  and the series in spherical harmonics in (3.1) 

and 

where the functions Ml(t), M2(t), M3(t) and M4(t) are obtained using equations 
(A 3)-(A 6) of Leichtberg et al. (1976): 

( -  l)$, 
Mf(t) = ___ {2tKo(t) + 3K,(t) + t2K1(t)}t,, ( 4 . 3 ~ )  

n! 

M?(t) = -~ (-  { (2n2 - 8n + 9) K,(t) + (n- 2) (n - 3) tK,  
n !  

+3(n-2)(n-3) -- 
t 

(4.3b) 
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{t&(t) + 2 K 1 ( t ) )  t n + l ,  ( 4 . 3 4  
( -  l p n  

M!(t) = ___ 
n !  

M?(t) = ___ {2n(n-  i )  K , ( t ) + n ( n -  l ) t K o ( t )  
n !  

- ( 2 n - 3 ) t 2 K , ( t ) }  t n - l ,  n = 2 , 4 , 6 ,  ... . ( 4 . 3 d )  

(ii) The second term in ( 4 . 1 ~ )  and the solution in cylindrical coordinates (3 .2)  

sin zt 0 0 
3 aR 1; [ 0 sin zt 0 ] 13(R, t )  (zi;:) dt 

0 0 coszt 

= lom S(0, z t )  J(t) (‘:)I dt ( R =  l ) ,  (4 .4 )  
DO(t) 

R-1 

where derivatives of the components of 13(R, t)  with respect to R are 

H13(t) = 10(t2+2)-11 -+t , H31 = 0, ( 4 . 7 )  (: 1 
H32(t) = t 1 o - 1 1 ,  H33(t) = t l o + t 2 1 1 .  

(iv) The term (at(l)/aR)lR-l written as a FourieI inversion) integral in the variable 

m 

F,(t) coszt dt.  (4 .8 )  a =  
- vg)l = 5 1 F’(t) sin zt dt ,  
aR R-1 
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Equations (3.13) giving the Fourier transforms of @ ( z )  and vg)(z) in z are 
differentiated with respect to  R to obtain FR and 4:  

F R ( t )  = z ~ (-l)'" {an-l(n-l) L(n-2) tK0(t)-t2K1(t)+2(n-2) ~ , ( t ) l  tn-2 
n-2 (n- l ) !  

Cn 
+!$n(tK1(t)+iK3(t)) tn+'+- 

Kl(t)] t n ] ,  ( 4 . 9 ~ )  
3n3 - 7n2 + 4n- 4 

8n 
K3(t)-4(2n- 1) tKo(t) + 

(n- 1) (n2 +2) 
n(2n- 1) 

(n- 1) (n2 + 2) 

where a, = 0 for n even and b, = c, = 0 for n odd owing to  the symmetry of the 
solution. 

Finally, v ( ~ )  at R = 1 can be written as 

or 

(4.10) 

where 

1 -  
Gz(t) = - C ( C n 2 M ~ ) ( t ) + D n M ~ ) ( t ) ) + f ( J z , C o ( t ) + J 2 2 D o ( t ) ) + g ( H 2 l ( t ) ~ ( t )  

1 
2~ 12-2 

+ H22(t)  $( t )  + H23(t) m ( t ) )  +; k",('?). (4.1 b, 

The coefficients a,, b,, c,, C,, D, and the functions A( t ) ,  B(t) ,  x( t ) ,  $( t ) ,  n(t) giving 
zeroth- and first-order perturbation solutions have previously been computed in 
Tozeren (1982~) .  The solution of the Stokes equations satisfying the boundary 
conditions (4.1 b, c) is, using (3.2), 

(i) = /:S(O, z t )  I@, t )  (i) dt ,  (4.12) 
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The solution u satisfies the boundary conditions a t  the cylindcr surface and a t  
infinity, (4.1 b, c ) .  But, yielding non-zero velocities a t  the particle surface, it violates 
the boundary condition (4.1 a) .  This condition imposed on d2) can be satisfied by 
finding w, a solution of Stokes equations, subject to  the following boundary 
conditions : 

x =  +T w = O  (R=1, 
w = -u ( r =  a) .  

(4.14) 

Similarly to the zeroth-order perturbation solution do),  the w can be found as the 
superposition of solutions in spherical and cylindrical coordinates (3.1) and (3.2) 
subject to (3.3) (see Leichtberg et al. 1976). The kernel functions A( t )  and B(t) in (3.2) 
are chosen such that the homogeneous boundary conditions a t  R = 1 are automatically 
satisfied for arbitrary values of the coefficients C, and D, in (3.1), and these 
coefficients are then determined by applying the boundary condition a t  r = a in (4.14). 
The d2) is given by the superposition of w and u. 

5. Torque and drag on off-centre spheres 
The zeroth-, first- and second-order perturbation solutions and numerical tests that 

are performed to determine the accuracy of these solutions are discussed in this 
section. 

The zeroth- and first-order solutions are given in Tozeren (1982a). The zeroth-order 
solution was previously determined by Leichtberg et al. (1976) as a special case of 
the motion of a coaxial array of concentrically positioned spheres. Tozeren (1982b) 
considered the same problem as an  application of the boundary integral-equation 
method. Results of the previous work on spherical particles are compared with the 
present results in table 1. The variables used in comparisons are the coefficients of 
additional drag A(u) ,  A(v) and A@) 

F = 6~rpa(A(~)U+ A(') V+A(%R), (5.1) 
where F is the total drag on the spheres. For a sphere flowing slightly off-centre the 
values in table 1 give the zeroth-order terms in the perturbation expansions of A(u)  
and A(") as E approaches zero : 

( €  -+ 0). (5.2) 1 A(U)  = A$U) + E A y J  + s 2 A p  + . . . , 
A(") = A$") + €A!") + ?A$"') + . . . , 
A(*) = ~ A i a )  + e2A$Q) + . . . 

The results of Wang & Skalak (1969) given in table 1 are for an infinite chain of spheres 
uniformly distributed along the axis with spacing equal to 40 particle radii. The factor 
that influences the accuracy most is the numerical integration procedure used to 
compute the Fourier inversion integrals detailed in the previous sections. Extensive 
numerical tests were carried out by Tozeren (19826) to determine how the accuracy 
is influenced by the parameters of the Simpson's rule used in numerical integrations. 
These parameters are N = number of integration points and T = upper limit of 
integration replacing infinity in Fourier integrals. The N and 'I' that  lead to the 
smallest errors in these experiments are used in the numerical results prcscntcd in 
this section (see Tozeren 1982b). Table 1 shows good agreement between the results 
of Tozeren (1982 b ) ,  Wang & Skalak (1969) and the present work. The discrepancies 
which are less than 0-1 yo for a/b  < 0.6 are due to the type of polynomial approximation 
used for Bessel functions, Simpson's rule of integration, and the uniform spacing of 
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0 1  
0 2  
0 3  
0.4 
0 5  
0.6 
0 7  

Leichtberg et al. 

A i U ,  hi") 

1.263 1.255 
1.680 1.636 
2.373 2.231 
3.599 3.223 
5973 5.017 

11.20 8696 
25.29 17.91 

Present results Wang et al. 

&U' A y )  
1.263 1.255 
1.680 1.635 
2.371 2.229 
3.593 3.216 
5952 4.999 

11 .11  8627 
2477 17.54 

p Ah"' 

1.263 1.255 
1.680 1.635 
2.370 2.229 
3.592 3.216 
5.949 4.996 

11.10 8.617 
24.70 17.49 

T 6 z e r e n 

AhU' Ah") 

1.263 1.255 
1.680 1.635 
2.370 2.229 
3.591 3.216 
5947 4.995 

11.09 8611 
2466 17.46 

TABLE 1 .  Comparison of present results (AhU) and hi")) with results of Leichtberg et al. (1976), 
Wang & Skalak (1969), and Tozeren (19823) 

collocation points used. Somewhat larger differences for a /b  = 0-7, also observed by 
Leichtberg et al. (1976, p. 159), are probably due to spacing the collocation points 
uniformly. Table 1 shows that the small differences between the results of Leichtberg 
et al. (1976) and others for a /b  = 0.3 becomes very significant a t  larger values of a/b.  
(The discrepancy is 1 % for a / b  = 0.6 and 3 %  for a / b  = 0.7.) Especially, the 
disagreement between Leichtberg et al. (1976) and the present work is unexpected 
because both use the same numerical procedure: a boundary method based on 
solutions of Stokes equations, series in spherical coordinates and integral transforms 
in cylindrical coordinates. Studying interactions of an infinite chain of spheres, Wang 
& Skalak (1969) used series in spherical and cylindrical coordinates. The work of 
Tozeren (1982 b)  is based on the boundary integral-equation method. The disagreement 
between Leichtberg et al. (1976) and others is more obvious in the case of two-sphere 
solutions, as discussed by Tozeren (1982b). The results we obtained by an analysis 
similar to  that of Leichtberg et al. (1976) support the results of Tozeren (1982b). 
Moreover, in two-sphere solutions presented by Leichtberg et al. (1976), the A(") is 
very little affected by variations in particle spacing, especially for larger values of 
a/b .  This is in contradiction with the results of Wang & Skalak (1969). 

I n  the series solution of Stokes equations in spherical coordinates as given by 
Happel & Brenner (1965), the only term that contributes to the drag on the particle 
is the solid spherical harmonic pP2.  In  the first-order solution d l ) ,  which is 
proportional to cosd (or sin$) the p-,  is necessarily of the form clP:(p) C O S ~ .  
However, the v, derived from such a term is odd and vR and v$ are even functions 
of z.  Such velocities may not satisfy the boundary conditions on the particle, and 
therefore cl, the coefficient of p-2 ,  must be zero. hiU), hi") and A(n) are also equal to 
zero for this reason. 

= ~ , r - ~ P : ( p )  sin 6. 
As opposed top+, this term is present in the first-order solution (3.8). Tozeren (1982) 
calculated the coefficient a, for three cases: (i) U + 0, V = SZ = 0;  (ii) V + 0, 
U = SZ = 0;  (iii) SZ + 0, U = V = 0. These coefficients A$U),  Al') and A(n) are 
tabulated in table 2. The torque T in general cases can be computed using 

The term that contributes to the torque on the spheres is 

T = 8npaj(AiU) U+A$') V + A $ Q ) R a ) ~ + O ( ~ 3 ) .  (5.3) 

The coefficients of each term in the series for v(O) and d l )  are determined by a 
boundary method based on matching the boundary conditions exactly a t  a number 
of points on the spherical surface. In  this method the number of terms in the truncated 
series (and thus the number of unknown coefficients a,, b,, c,, C,, D,) is equal to the 
number of boundary points. Use of 13 uniformly distributed boundary points is shown 
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a l b  
0001 
001 
0 1  
0 2  
0 3  
0 4  
0 5  
0 6  
0 7  

A(u) 

- 1.299 x lo-' 
- 1-324 x 
- 1.615 x 
-08258 X lo-' 
- 2.466 x lo-' 
-6137 x lo-' 
- 1'443 
- 3.500 
- 9569 

A(V) 

1.001 3 x 
1-0132 x 
1-16 x lo-' 
2.805 x lo-' 
5332 x lo-' 
9544 x 10-1 
1.727 
3.353 
7.422 

A(R' 

- 1.000 
- 1~000001 
- 1.000 74 
- 1'00591 
- 1.0204 
- 1.050 3 
- 1.1048 
- 1.200 
- 1.371 

TABLE 2. The coefficients A(u),  A('), AcR) for several different values of diameter ratio alb 

A = 0 3  A = 0 6  

9 13 13 17 

m Y 

13 1.2259 1.2259 429.47 

17 1-2259 1.2259 4057 4057 
25 1.2259 4055 4055 
49 - 4055 

- 

- 

- - 

TABLE 3. Convergence of second-order perturbation solutions for a/b  = 0 3  and 06 ,  where 
m = number of boundary points and n = number of terms in the truncated series 

by Tozeren (1982a) to yield convergence of 5 digits in C,, D ,  and four digits in a,, 
b,, c,. However, for the determination of the coefficients of d2), this method with 
the choice of 13 boundary points led to very poor results, as shown in table 3. 
Considerable improvement is obtained by increasing the number m of boundary 
points but keeping the number of terms n in the truncated series constant and 
minimizing the error in the sense of least squares. Table 3 gives the results of various 
tests performed for a/b  = 0.3 and 0.6. This table shows that converged results are 
obtained using n = m = 13 for a/b = 0.3 and using n = 13, m = 25 for a/b = 0 6 .  A 
point-matching procedure using 13 boundary points is employed for a/b < 0.3, and 
a boundary method with least-square error is used for a/b > 0.3 using 13 terms in 
the series (actually only 7 owing to  symmetry with respect to  z )  but minimizing the 
error a t  25 boundary points. 

The values of hiU), hiv) and hi*) are given in table 4 for 0.001 < a/b d 0 6 .  (The 
difference between tables 3 and 4 for a/b = 0.6 is due to  the difference in the number 
of integration points of the numerical integration scheme.) Minus signs in the first 
two columns indicate that there is a decrease of drag as the sphere moves slightly 
away from the cylinder axis. The third column indicates that  an off-centre sphere 
rotating about the +y-axis experiences a drag in the -k-direction. These results 
compare well with the results of Happel & Brenner (1965) in the limit where a/b is 
small, and with Bungay & Brenner (1973) when a/b approaches unity. Happel & 
Brenner give the following expression for an off-axis sphere : 
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a l b  
000 1 
0.0 1 
0 1  
0 2  
0.3 
0 4  
0 5  
0 6  
0 7  

A y  

- 0000 700 9 
-0007 281 
-01266 
- 0'592 3 
- 1.226 
-3.619 
- 11.38 
- 40.62 
- 191.9 

hi") 

- 1.00281 
- 1.028 79 
- 1.388 
- 2.235 
- 3.493 
-6717 
- 15.12 
-41'72 
- 157.6 

h p  

1.732 x 
1.765 x lo-* 
2.152 x 
01101 
03288 
08182 
1.925 
4.640 

- 

TABLE 4. Second-order coefficients of drag for various values of alb  

For a/b  = 0.001, using these formulae, hiU) and hi") are found to be 00006977 and 
1.00280 respectively, compared with 0.0007009 and 1.00281 in table 4. The 
disagreement in the third digit is because of the omission of terms of order (a /b)2  in 
(5.4) (equation (7-3.96) of Happel & Brenner 1965). 

Two major concerns of this and the earlier paper (Tozeren 1982a) were: (i) to 
determine the torque on eccentrically positioned spheres flowing in tubes; (ii) to show 
that the drag on a finite sphere slightly off-axis is smaller than the drag on an ident- 
ical sphere translating with the same velocity along the centreline. This effect was 
previously observed by Happel & Brenner (1965) for the limiting case when the 
particle radius is very small compared with tube radius, by Bungay & Brenner 
(1973) for closely fitting spheres, and by some experimental investigators (see Happel 
& Brenner 1965). A possible reason for this decrease is that some effective distance 
between the particle and the boundaries is greater for slightly off-centre spheres. 
Another physical variable of some interest is the pressure drop in the tube due to 
the motion of the particles. The second-order terms in the asymptotic expansion of 
pressure drop in E (first corrections to zeroth-order terms) may be determined by an 
analysis similar to that given in this paper. Happel & Brenner and Bungay & Brenner 
show that the pressure drop for eccentrically positioned spheres decreases like the 
drag. 

The torque and drag on an off-axis sphere translating and rotating in a cylindrical 
tube are determined in the limit where the eccentricity is small. It is found that the 
drag decreases as the sphere moves away from the cylinder axis, and that this decrease 
is more significant as the diameter ratio increases. An eccentrically positioned sphere 
subject to no torque, flowing in an otherwise quiescent fluid, rotates about the -j 
axis. The Poiseuille flow past a stationary sphere makes the sphere rotate in the 
opposite direction. The formulae for drag and torque presented in this paper are 
expected to give reasonable results for moderate values of the eccentricity parameter 
because the neglected term in the coefficient of drag h is O(e4) and O(e3)  in the torque 
coefficient A .  

This research has been supported by Turkish Scientific Council grant MAG-559 and 
by NATO Research Grant no. 110.80. 
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